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MUERBIFE ICOVT

A combinatorial object without symmetries doesn'’t exist — by definition.
by Gian-Carlo Rota
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© Introduction via finite geometry
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Finite affine planes

Finite projective planes (axioms)
Let P be a finite set of points and L be a finite set of lines.

The incidence structure (P, L, €) is called a finite projective plane, if the following hold:
© Any two distinct points are joined by exactly one line.

@® Any two distinct lines meet in exactly one point.

© There exist at least four points, no three of which are collinear.

e Each line contains g + 1 points.
e Each point lies on g + 1 lines.
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Finite affine planes

Finite affine planes (axioms)

Let P be a finite set of points and L be a finite set of lines.
The incidence structure (P, L, €) is called a finite affine plane, if the following hold:
© Any two distinct points are joined by exactly one line.

@ For any line and any point not on that line, there exists exactly one line passing through
the point and parallel to the given line.

@ There exist at least three points, no three of which are collinear.

e Each line contains g points.
e Each point lies on g + 1 lines.
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Generalization to Steiner systems

Steiner systems

© Let B be a collection of subsets (called blocks) of a v-element set V, where each block
has size k.

@ Every t-subset of V is contained in exactly one block.
The incidence structure (V, 8B) is called a Steiner system S(t, k, v) or a t-(v, k, 1) design.

B %
@ Equivalently, U ( ) e ( ) (as multisets).
BeB t t

Analogy with finite geometry

® Any t (especially for t = 2) points uniquely determine a block.
e Each block contains the same number of points.
® Each point is contained in the same number of blocks.

¥ B (Xiao-Nan Lu) HEE TV OERE 2025 £ 10 B 31 B 7/76



Divisibility conditions for Steiner systems

Necessary (divisibility) conditions for the existence of S(t, k, v)
If a Steiner system S(t, k, v) exists, then

(k_.')|(v_.') forallie{0.1,....t—1}.
t—1 t—1

® These divisibility conditions ensure that the number of blocks containing a given i-subset
of points is an integer.
v
()

® The total number of blocks is b = Rk
(t)
()
® The number of blocks incident with each pointis r = (;;_11)
t-1
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Results on existence of Steiner systems

e t =2, k = 3 (Steiner triple systems): divisibility conditions are sufficient. [Kirkman, 1847]
® t =2, k € {4,5}: divisibility conditions are sufficient. [Hanani, 1961]

® { =2,6 < k < 10: divisibility conditions are sufficient except for a few small values of v.
[1970s—2000s]

e { =2, general k, divisibility conditions are asymptotically sufficient. [Wilson, 1972—1975]
(based on number-theoretic and recursive combinatorial constructions)

e t = 3, k = 4 (Steiner quadruple systems): divisibility conditions are sufficient. [Hanani,
1960]

e General (t, k), divisibility conditions are asymptotically sufficient. [Keevash, 2014+ (v1),
2024+ (v4)] (based on probabilistic methods)

® { > 4: only finitely many explicit examples are known;
t > 6: no explicit examples are known.
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Research problems in combinatorial design theory

generalization

PG&AG * =5 " Si(tk,V)

generalization
—

Sa(t,k,v) (i.e., a t-(v, k, 1) design)

+ various conditions . .
— various types of designs

Main research questions:
e Existence: Under what conditions does a particular design exist (or not exist)?
e Construction: How can such designs be explicitly constructed?

e (Algebraic) properties: What kind of properties (e.g., symmetries) do they have?
Existence and construction of designs with desired properties.
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Construction of finite projective planes

Finite projective plane (Axioms)
© Any two distinct points are joined by exactly one line.
® Any two distinct lines meet in exactly one point.
© There exist at least four points, no three of which are collinear.

© Consider the 3-dimensional vector space V = F; over a finite field Fj.
@ A point corresponds to a 1-dimensional subspace of V.

* The total number of points is ‘1;%11 =¢+qg+1.
©® A line corresponds to a 2-dimensional subspace of V.

® Each line contains g + 1 points.

O This gives a finite projective plane of order g, i.e., S(2,g+1,¢% + g+ 1) with ¢ + g + 1
blocks.
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Construction of finite affine planes

Finite affine plane (Axioms)
© Any two distinct points are joined by exactly one line.

@ For any line and any point not on that line, there exists exactly one line passing through
the point and parallel to the given line.

© There exist at least three points, no three of which are collinear.

© Set of points: F5 = {(X,y) | X,y € Fq}
@ Set of lines:

Lmp =1{(x.y) €F5|y = mx + b} for (m, b) € F3,

La={(x,y) €F;|x = a) for a € Fy.

© This gives a finite affine plane of order g, i.e., S(2,q, q2) with g2 + g blocks.
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affine plane AG(2,3)
Example: affine plane AG(2, 3), i.e., S(2,3,9)

V={1,2..9), 8B={123,456,789,147,6258,369, 168,249, 357,159, 267, 348}
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From projective planes to affine planes

By removing the “points at infinity” and the lines containing them from the finite projective
plane PG(2, q), we obtain the finite affine plane AG(2, g).

* The projective plane has g? + g + 1 points.

®* Remove the g + 1 points at infinity (one corresponding to each class of parallel lines).
¢ The remaining g° points form the point set of the affine plane.

e Removing the g + 1 lines containing those points leaves g + q lines in total.
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Existence of finite projective planes

® For every prime power @, a projective plane of order g exists.

e Bruck—Ryser Theorem (1949): If a projective plane of order n exists and n = 1,2
(mod 4), then n must be a sum of two squares. (Rules out n = 6,14,21,22,...)

® n = 10: Nonexistence (Lam—Thiel-Swiercz, 1989; heavy computer-aided proof)
¢ Other non-prime-power orders: open.

Conjecture

A finite projective plane of order n exists only when n is a prime power.

Equivalently, 3? S(2,n + 1,n? + n+ 1) or S(2, n, n?) for non-prime-power n > 12?

Table: Number of finite projective planes of order n

ni2(3(4(5|6|7 8,910 11 12| 13 |14 |15 | 16 | 17 | 18 | 19 | 20
#1111 ]0[1|1]4]0 [=21]7?2|=21|0|??7|=222|=>1|7?7]|2=21]7??
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@ Design of experiments and BIB designs
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Spring balance weighing designs: Model 1

Consider a weighing problem using a spring balance (/A% IXH*D OFFEETE)

® 7 objects

Xo

EOEOEEEE

e Estimator = weighing = true weight + error

Xi=Yi=Xité&

for0 <i<6.

® 7 weighings
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Spring balance weighing designs: Model 2

® Three objects in each weighing

Yo=Xo+ X1 + X3+ ¢&o
Yi=X1+ X2+ X4 + &4
Yo=Xo+ X3+ X5+ &2
Y3 = X3+ X4 + Xg + €3
Ya=X4+ X5+ Xo + &4
Y5 = X5 + Xg + X1 + &5
Y6 = X6 + Xo + X2 + &6

® 7 weighings
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Design matrices for spring balance weighing designs

*y=[n....
® Model 1: y =Dix + &

D=k =

Ccooocoo —~

O OO oo =0

[eNeNeNoR N oNo)

[eNeNeo N oNoNo)

[eNe N oNoNeNe)

O - OO O OO0

’yG]T’ X = [XO’X'I""

-~ 0000 O0Oo

Xe]', &= [g0.1,...

Dy =

T o000 0 —~

,&6] "

O 242 000 = =

- OO0 O = —=+0

® Model2: y = Dox + ¢

oo~ —~0=—=o0
O~ 20 =00
- -0 =+ 00O

OO O =+ =20 =

® D, (resp., Dy) is called the design matrix (E+E17%!) of Model 1 (resp., Model 2).
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Least-squares estimation for spring balance weighing

® Model2: y = Dox + &
& Djy=Mx+DJe < M,'Djy=x+M,'Dje

31 1 1 1 1 1] KT = (A B (=
1311111 -1 8 -1 -1 -1 -1 -1
1131111 J-1 -1 8 11
My=DiDp=|1 1 1.3 1 1 1) M'=ci-1 -1 -1 8 -1 -1
111131 1 T [ S [
111113 1 e T R B - B
11 1 11 1 3 1 -1 -1 -1 -1 -1 8]

® M is called the information matrix (1&¥&17%5!) of D,
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Estimate and variance for spring balance weighing

* Model 2:

1
Xx=M"D]y=—
2y 6

g~ N(0,02)i.id. for0<i<86.
Model 2: V(%;) = g0

Model 1: V(%) = o2

Model 2 is better than Model 1

(because Model 2 has a smaller variance of estimation error).

[ 2

=]
2
2
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-1
1
2
2
1
2
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-1
—1
2
2
-1
2

2
—1
1
—1
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2
—1
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Set system representation of design matrix

¢ Index the columns (for seven objects) of D, by 0,1,...,6

Dy =

O 42 OO0 O =+ —
- OO0 O = =20
OO0 = =2 0O = 0
o =42 =2 0O =+ OO0
L_L —_ O - O O q

O OO =+ = 0O =

T 0O~ 000 =

* Rows (for seven weighings) of D> can be represented by subsets of {0, 1,...,6}

Bo =1{0,1,3},B1 = {1,2,4}, B, = {2,3,5},
Bs = {3,4,6},Bs = {4,5,0},Bs = {5,6,1}, Bs = {6,0,2}.
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BIB designs

Balanced Incomplete Block Design

Let V be a finite set and B be a family of subsets of V. The pair (V, 8) is a (v, k, 1) balanced

incomplete block design (B398 WR AR5 7 Ow 2 TH 1 >; BIBD) or a 2-(v, k, 1) design, if
the following hold:

0 Vi=yv,
@ Forany B € B, |B| = k.
@ For any pair of points {x, y} C V, there are exactly A blocks B € 8 containing {x, y}.

® v: number of elements or number of points
® k: block size

® 1:index
& B (Xiao-Nan Lu) HEE TV 1 OO
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BIB designs and graph decomposition

* K,: complete graph of order v
* (v,k,A=1)BIBD < decomposition of K, into Ki’s.
* (v,k =3,1=1)BIBD < decomposition of K, into triangles.

—n)
@
0
&

O,
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BIB designs and graph decomposition

* K,: complete graph of order v
® (v,k,A=1)BIBD <= decomposition of K, into Ki’s.
® (v,k =3,1=1)BIBD < decomposition of K, into triangles.

{0,1,3}
{1,2,4}
{2,3,5},
{3,4,6},
{ }
{ }
{ }

b

B

4,5,0
5,6,1
6,0,2

B

’
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Fisher’s inequality

Theorem (Fisher’s inequality)

For a (v, k, ) BIBD with v > k, the number of blocks b > v, where b = A - %

Symmetric BIBD
A (v, k, 1) BIBD with b = v is called a symmetric design.

A projective plane of order g is a symmetric (g> + g+ 1,9+ 1,1) BIBD.
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Bruck—Ryser-Chowla Theorem

Theorem (Bruck—Ryser—Chowla Theorem, 1949—-1950)
If a symmetric (v, k, A1) BIBD exists, then
© forv even, k — A must be a square.

@ for v odd, there exists integers x, y, z with (x,y, z) # (0,0, 0) such that

22 = (k= A)x2 + (=1)"D/2 32,

BRC Theorem is a generalization of Bruck—Ryser theorem for finite projective planes
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Examples by Bruck—Ryser-Chowla theorem

(22,7,2) SBIBD does not exist
e r=Av-1)/(k-1)=2x21/6=7€Z, b=vrlk=22x7/7T=22¢cZ.
® By BRC theorem, since k — 1 = 7 — 2 = 5 is not a square, nonexistence.

(43,7,1) SBIBD does not exist
o r=A(v-1)/(k-1)=1x42/6 =7€Z, b=vr/k=43x7/7 =43¢
* By BRC theorem, consider the equation z2 = 6x? — y2.
¢ By modulo 3,
Z2=-y?=2y®> (mod3) < 2=(y'2)? (mod3) (—) =1,

where (§) is the Legendre symbol. However, 2 is not a square mod 3.
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New designs from the old designs

Theorem (sum of BIBD)
If there exists a (v, k, A1) BIBD and a (v, k, A2) BIBD, then a (v, k, 11 + A2) BIBD exists.

L (V,51), (V,Bz) N (V,B1 UBQ)

Theorem (complementation design)
A(v,b,r,k,A) BIBD (n > k + 2) exists iffa (v,b,b — r,v — k,b — 2r + 1) BIBD exists.

* (V,B)~ (V,8)with B:=(V\B|B e B)
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Steiner triple systems

Steiner triple system; STS
A (v,3,1) BIBD is called a Steiner triple system (STS), denoted by STS(v).

* If there exits an STS(v), then v = 1,3 (mod 6).

* Bose construction (for v = 3 (mod 6)) and Skolem construction (for v =1 (mod 6)) are
well-known direct constructions for STS(v).

Theorem
An STS(v) exists if and only if v = 1,3 (mod 6).
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Cyclotomic construction for STS
Cyclotomy ~ multiplicative subgroups and their cosets in F;

Theorem (Anstice, 1852—1853)

For prime p = 6t + 1, let « be a primitive element in Fp, and w := a?t.
(Then, w is a primitive cubic root of unity in F,,.) Let

Di=d - {1,w,? = {,a® o**}  and

B={Di+j:0<i<t-1,jeFp}
Then (Fp, B) is an STS(p).

Example (STS(7))

Letp=6t+1=7wheret=1. Take @ = 3, then D = {1,0?,*} = {1,2,4} in F5.
Let B={D +j: j € F;}. Then (F7,B) is an STS(7).
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Heffter’s difference problem

difference triple

Let v be an odd integer. The triple {x,y,z} c {1,2,..., "2;1} is a difference triple if
® X+y=z(x<y<z),or
®* Xx+y+2z=0 (mod v).

Moreover, B(T) := {0, x, x + y} is called the associated base block of T.

Heffter’s difference problem

Forv=1,3 (mod 6), lett = [%J Let7 = {T4, T, ..., T;} be a collection of difference triples.
Then 7 is said to be a solution of Heffter’s Difference Problem (HDP), denoted by HDP(v), if

e ifv=1 (mod6), U, Ti=[1,5];
e if v=3 (mod 6), U, Ti = [1, 5] \ {¥).
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Heffter’s Difference Problem < Cyclic STS

Theorem

For any v = 1,3 (mod 6), there exists a cyclic STS(v) iff there exists an HDP(v).

Theorem (Pelteson, 1939)
Forany v =1,3 (mod 6) withv > 7, v 9, there exists an HDP(v).

Theorem
Forany v =1,3 (mod 6) withv > 7, v # 9, there exists a cyclic STS(v).
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Pairwise balanced design

Pairwise balanced design

Let K be a finite set of positive integers. Let V be a finite set and 8 be a family of subsets of V.

The pair (V,8) is a (v, K, 1) pairwise balanced design (PBD) if the all the following conditions
hold.

0|Vi=yv,
@ Forany B € 8, |B| € K, where v > max K.
@ For any pair of points {x, y} C V, there are exactly A blocks B € 8 containing {x, y}.

* When K = {k},a(v,K,1) PBD is just a (v, k, 1) BIBD.
* Eg. (v,{3,5},1) PBD < decomposition of K, into K3 and Ks.
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Group divisible design

Group divisible design

Let K and G be finite sets of positive integers. Let V be a finite set and B be a family of
subsets of V. The pair (V,G, B) is a (v, G, K, 1) group divisible design (GDD) if
0Vi=y,

O G={Vi,Vo,...,Vn} (m=>2)is apartition of V,i.e., VinV;=0and U, Vi= V. The
subsets V; are called groups.

@ Forany Ve G, |Vi| € G where v > maxG.
@® Forany B € 8, |B| € K, where v > max K.

@® For any pair of points x, y from different groups, there are exactly A blocks B € B
containing {x, y}.

® For any pair of points x, y from the same group, no block contains {x, y}.
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GDD and Transversal Designs

e When G ={1},a(v,G,K,1) GDD s justa (v, K, 1) PBD.
e When G = {g}, where g > 2, the GDD is said to be of type g*/9.

* When G = {g}, K = {k}, a (v, G, K, 1) GDD of type g is a transversal design, denoted by
TD(g, k, ).

Theorem

The following are equivalent.
O "D(g.k, 1),
@ OA(N=¢%k,g.2) (1 =1),
@ k-2 MOLS(9).
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Latin square of order n < TD(3,n, 1)

° n=7
o X =(Xc)= ® Gow=1{r1:=(r,1)|0<r<n-1j},
1’ Geol =f{C2:=(c,2)|0<c<n-1},
Gele = {€3:=(e,3)|0<e<n-1},

® V= GiowUGgotUGegle =1{0,1,...,n—1} x{1,2,3}
G = {Grows Geol> Gele}
BZ{{H,Cz,es}|Osr,csn—1,x,,0:e}

* (V,G.8)isaTD(3,n,1).

DO, WON—|O
OO~ WN

= Ol 0|l w N
N =OooOh~ W
QWLIN—=|OO O
AlOIN 2O O
QOO

[ ]
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Construct new BIBD using GDD

O Complete graph K7

0
3
d 2

Complete 3-partite graph K777
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@ Difference sets, difference families, and cyclotomy
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Difference sets (DS)
Definition

Let (G, +) be a finite abelian group of order v. A subset D € G with |[D| = k is called a (v, k, 1)

difference set if every nonzero g € G can be expressed in exactly A ordered pairs
(x,y) e Dx D suchthatx -y =g, i.e.,

#{(x,y)erD: x—y:g}:/l forallge G".
* k(k—-1)=2a(v-1).
e The family {D + g : g € G} forms a symmetric 2-(v, k, 1) design.
Definition using group-ring expression
Identify D with D = },,cp x in Z[G]. Then, D is a (v, k, 1) difference set iff
DD =k-1g+1 ) g

9eG\{0}
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Character-sum criterion for difference sets

 G={x:G— C*: yisahomomorphism}.

Character-sum criterion (Turyn, 1965)

D c G is a difference set in G iff, for every nontrivial character y € G \ {1g},

D x(x)

xeD

2
=k-A
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Paley difference sets

Paley difference sets (1933)

Letq=3 (mod 4). Let D = C(()z) be the set of nonzero quadratic residues in Fg.
Then, Diis a (g, %", %2 difference setin G — (Fq, +)
Sketch of proof: Using the quadratic character n and the canonical additive character ¢, the

sums Y xcp ¥(ax) can be expressed by G(n) and n(a). Since |G(n)l = v/gand g =3 (mod 4),
the character-sum criterion is satisfied.
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Cyclotomy in finite fields

Cyclotomic classes

Let g be a prime power and fix a primitive element a € Fy. For e | (g - 1), define
cl¥ =@, CcO=dcl(i=1,..,e-1)
Here, C,.(e) is called the i-th cyclotomic class of index e.
o c? is a (Paley) DS,

Question

For which e, does the cyclotomic class Cée) form a difference set in (Fg, +)?
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Cyclotomic difference sets: known cases
Theorem (Lehmer, 1953)

Let g = p’, where p is an odd prime. Let e > 2 be an even divisor of g — 1.
* e=2: Céz) is a difference set iff g = 3 (mod 4).

° c=4: Cé4) is a difference set iff g = p = 1 + 4t for some odd integer t.
® ¢=06: C(()G) is never a difference set.

* g=28: C((,S) is a difference set iff g = p = 1 + 8u? = 9 + 64v? for some odd integers u, v.
Theorem (Xia, 2018)
If e <22 and e ¢ {2,4,8}, then Cée) is never a difference set in (Fg, +).
Conjecture
C(()e) is a difference set in (Fq, +) only when e ¢ {2, 4, 8}.
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Union of cyclotomic classes (1)

Difference sets from cyclotomic classes of index 6 (Hall, 1956)

Let g be an odd prime power of the form q = 4x? + 27 for some integer x.
Then ¢® uc® ucl® is a (g. %+, %) difference set in (Fq, +) with parameters.

Remark: There are only finitely many proper prime powers of the form q = 4x? + 27.
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Union of cyclotomic classes (2)

Theorem (Feng, Xiang, 2012)

Let p1 =7 (mod 8) be a prime, e = 2p{", and let p be a prime such that f := orde(p) = @.
Let s be an odd integer, and put g = p®. Let | be any subset of Z/eZ satisfying
{imodp{": iel}=2Z/p]"Z.

Define
p=|Jc® cE;

i€l

Then D is a skew Hadamard difference set in (Fq, +) whenever p = 3 (mod 4).
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Union of cyclotomic classes (3)

Theorem (Feng, Momihara, Xiang, 2015)
Let py =3 (mod 8) be a prime with p; # 3, and let e = 2p{". Let p = 3 (mod 4) be a prime
such that f := orde(p) = @. Put g = p', and define

J={(p)u2(p)u{0} (mod 2py),

and
py =1

b= U UC(;-)i-pf"‘j'

i=0 jed

Assume that 1 + p; = 4p", where h is the class number of Q(=p1).
Then D is a skew Hadamard difference set in (Fg, +).
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Character sums in cyclotomic constructions

Additive character: y4(x) = exp(%’”TrFq/Fp(ax)).

Multiplicative character: y : Fy — C*.
Gauss sum: G(x) = Xer: X (X)¥1(X)-
Jacobi sum: J(x1,x2) = Zxer, X1 (X)x2(1 = x).

Character sums over D can be expressed as linear combinations of G(x) and J(x1,x2).
Known evaluations such as |G(y)| = +/q allow verifying the constant-modulus condition
required for a difference set.
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Singer difference sets (via finite projective geometry)

From planes to (Singer) difference sets
If a projective plane of order n admits a point-regular automorphism group G of order
v =n?+n+1 (e.g., the Desarguesian plane PG(2, q) via a Singer cycle), then choosing one
line L and taking
D={geG: 09¢L}cG
gives an (n®> + n+1, n+1, 1) difference set in G (a Singer difference set).

Generally, points and hyperplanes of the projective space PG(n — 1, q) give rise to a cyclic

group G = Zgn_1),(g-1)» @nd furthermore ((5%11’ qnq__11_1, q’::f ) Singer difference sets.
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Difference families (DF)

Definition

Let G be a finite abelian group of order v. A collection ¥ = {Ds, ..., Dy} with D; € G and
|Dj| = k is a (v, k, 1) difference family if

m
> #{(xy)eDixDi: x—-y=g}=a forallgeG".
i=1

* mk(k—-1)=2a(v-1).
® The family {D;+g: 1 <i<m, ge G}formsa2-(v, k, 1) design.
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Radical difference families (via cyclotomy)

Definition
Letg=1 (mod k(k — 1)) be a prime power. A (g, k, 1) difference family in (Fq, +) is called a
radical difference family if the base blocks satisfy:
¢ |f k is odd, each base block is a coset of the group of k-th roots of unity in Fg.
e If k is even, each base block is the union of a coset of the (k — 1)-th roots of unity
together with 0.
For odd k, let e = (g — 1)/k. The group of k-th roots of unity is Cée)

Hence, a radical difference family can be viewed as collections of cyclotomic classes C,.(e)

e k = 3: Anstice’s STS (1852, 1853)
® kK =4,5: Bose (1939)
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Existence for radical difference families

Radical difference families with k = 4,5 (Buratti, 1995)

® Let p = 12t + 1 be a prime, with 2° the largest power of 2 dividing t.
Then a (p, 4, 1) radical DF exists if and only if -3 is not a 26*2-th power in Fp.

® Let p = 20t + 1 be a prime, with 2¢ the largest power of 2 dividing t.
Then a (p, 5, 1) radical DF exists if and only if @ is not a 28" -th power in Fp,.

¥ B (Xiao-Nan Lu) HEE TV OERE 2025 £ 10 B 31 B 51/76



Existence for difference families

DFs with k = 4,5, 6 and prime power g (Buratti, 1995; Chen, Zhu, 1998—-1999)
* A (q,4,1) DF exists for all prime powers g =1 (mod 12).
* A(q,5,1) DF exists for all prime powers g = 1 (mod 20).
* A (q,6,1) DF exists for all prime powers g = 1 (mod 30), except for g = 61.

Sketch:

@ For g > qo(k), show asymptotical existence using Weil’'s estimation on multiplicative
character sums (under complicated combinatorial conditions).

® For g < qo(k), do hard works (with aid of computers).
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Efforts on improving the bound g, (1)

A “combinatorially user-friendly” encapsulation of Weil’s estimation:
Theorem (Buratti, Pasotti, 2009)

Letq=1 (mod e) be a prime power. Let {b1, ba, .

.., bt} be an arbitrary t-subset in Fq. Let
(1,Jo, .- -,jt) be an arbitrary t-tuple of Ze. Set

X:{xqu: X—bje ije) foreach1 <i< t}.
Then, |X| > n whenever q > Q(e, t,n), where

Q(e.t,n) = (U+ ‘/Uz+get_1(t+e”)) and U= Zt](t)(e—nh(h-n.

=

In particular, X is not empty if g > Q(e, t) := Q(e, t,0).
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Efforts on improving the bound g, (2)
Improvement on Buratti-Pasotti theorem, giving better bounds of qo for DF with specific k.

Theorem (L., 2017)

Letg =1 (mod e) be a prime power. Suppose a;, bj € Fy and ¢j € Z for1 < j < t -1 such
that{a].‘1bj [1<j<t-1}U{0}is at-subset of Fq. Let X = {x € Fq | x satisfies (i) and (ii)}.

(i } xeCi(e) fori € Z%;
(i) an‘{‘bjeC((:ﬁ) for1<j<t—1andieZ.

Then |X| > n whenever g > L(e,t,n) ...

2
c1 4 /2 +4p(€)co
q>L(e.t.n) = 21,»7((9) with cg = (en+t-1)e"™ +e-1 and o :==|e-w'+ 3 (e-w)|V.
wleu(&)#0

where w* is the largest divisor of e with (&) = —1 and W := 311, (') (e - 1)(¢.

In particular, X is not empty if g > L(e, t) := L(e,t,0).
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Efforts on improving the bound g (3)

Table: Improved existence bounds qo(k) for (g, k, 1)-DFs with 3 | k

kK t e L.(2017) Buratti—Pasotti (2009) Chen—Zhu (1998, 1999)

6 4 5 360x10° 1.89x10° =L
9 7 12 151x10® 3.76x10'® 4.78 x 1020
12 10 22 4.26x10%’ 5.15x10%8 417 x 1031
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@ Designs with high symmetry
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Automorphisms of designs

Let G be a permutation group on a finite set V.
e G is t-transitive if it acts transitively on ordered t-subsets of V.
® G is t-homogeneous if it acts transitively on unordered t-subsets of V.

Designs from group actions (t-homogeneous — t—design)

If G acts t-homogeneously on a set V of size v, and 8 is the orbit of some k-subset under G,
then (V, B) is a t-(v, k, 1) design for some A.

Example (Mathieu groups — t-designs with t > 3)
* My — 3-(22,6,1) design
® My (resp., Mo3) = 4-(11,5,1) design (resp., 4-(23,7, 1) design)
® Mo (resp., Moy) = 5-(12,6,1) design (resp., 5-(24, 8, 1) design)
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Automorphisms of designs

Let 2 = (V, B) be a design.

Automorphism
A bijection g : V — Vis an automorphism of Z if for every B € B,

9(B) := {g(x) X € B} € B.

All automorphisms form a group Aut(Z) under composition.

Flags
A flag is an incident pair (x, B) with x € X, B € 8, and x € B.
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Transitivity

Let G < Aut(2).

Point-transitive
For any points x, y € V, there exists g € G with g(x) = y.

Block-transitive
For any blocks By, By € B, there exists g € G with g(B1) = Bo.

Flag-transitive
For any flags (x1, B1) and (xz, Bz), there exists g € G with g(x1) = x2 and g(By) = Bo.

® Flag-transitive = point-transitive and block-transitive.
® For non-trivial 2-designs, block-transitive = point-transitive (Block, 1965).
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Automorphism groups of affine planes

Example (Affine Plane AG(2, 3))
* Point set: V = F3
® Block set: all affine lines
® Parameters: 2-(9,3,1).
* Aut = AGL(2,3) of order 32 - 48 = 432.
* GL(2.3) = {A € My(Fs) : detA # 0} of order (32 — 1)(3% - 3) = 8 - 6 = 48.
®* AGL(2,3) = V< GL(2,3) by x — Ax + b with A € GL(2,3),b € V.

® Point-, block-, and flag-transitive.

Affine Planes AG(2,q),q > 3

* Parameters: 2-(¢%,q,1).
e Aut = AT'L(2, q) acts transitively on points, lines, and flags.
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Automorphism groups of projective planes

Example (Fano Plane PG(2,2))

Point set: 1-dimensional subspaces of Fg

Block set: 2-dimensional subspaces of IFS
Parameters: 2-(7,3,1).
Aut = PGL(3, 2) of order 168.
® GL(3,2) = {A € M3(F,) : detA #0), Z = (s : 1 € F}).
® PGL(3,2) = GL(3,2)/Z = GL(3, 2) of order (23 = 1)(23 = 2)(23 = 22) =7-6-4=168.
Point-, block-, and flag-transitive.

Projective Planes PG(2,q),q > 3

® Parameters: 2-(g° + g +1,q+1,1).
® PI'L(3, q) acts transitively on points, lines, and flags.
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Flag-transitive t-(v, k, 1) designs: Classification complete

Flag-transitive 2-(v, k, 1) designs (BDDKLS ’90; Liebeck '98; Saxl '02, etc.):
* PG, AG, unitals, 1-d. affine types.

Flag-transitive 3-(v, k, 1) designs (Huber 05, *09):
* AG2(d,2), 3-(q + 1,4,1) with Aut = PSL(2, q)
® 3-(¢°+1,9+1,1) (PGL(2,¢°) ~ P'(Fg))
e 3-(22,6,1) with Aut = My, (Witt-type).

Flag-transitive t-(v, k, 1) designs with t € {4,5} (Huber '09): only Witt designs
® 4-(11,5,1) with Aut = My, 4-(23,7,1) with Aut = Mo
e 5-(12,6,1) with Aut = My, 5-(24,8,1) with Aut = Mo,

Flag-transitive 6-(v, k, 1) designs (Huber '09): non-existence

& B (Xiao-Nan Lu) HEE TV OERE 2025 £ 10 B 31 B 62/76



Block-transitive t-(v, k, 1) designs

Block-transitive t-(v, k, 1) designs with t > 8 (Cameron, Praeger '93): non-existence
Block-transitive 7-(v, k, 1) designs (Huber "10): non-existence

Block-transitive 6-(v, k, 1) designs (Huber '08, *10): non-existence except possibly in a specific
small class

Block-transitive t-(v, k, 1) designs with t € {4, 5} (Huber '09): only Witt designs.
Block-transitive 3-(v, k, 1) designs: not fully classified

Block-transitive 2-(v, k, 1) designs: too many
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@ 3-designs with point-regular automorphisms
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Point-regular designs

Let G < Aut(2).

Point-regular
G is point-regular if it acts regularly (i.e., sharply transitively) on V, i.e.,
for any x, y € X there is a unique g € G with g(x) = y.

With a point-regular G, we can identify X with G
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Example: Boolean Steiner Quadruple Systems

Steiner quadruple system
A 3-(v,4,1) design is also called a Steiner quadruple system SQS(v).

Boolean Steiner Quadruple Systems:
® Form >3, take V = FJ..
* Let B be the affine 2-flats of AG(m, 2) (each has 4 points).
e Then (V,8)is a 3-(2™,4,1) design, i.e., SQS(2™).
* The additive group (F7', +) is point-regular on points, so these SQSs are G-invariant with
a point-regular automorphism group.
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Cyclic SQS

Cyclic design
Let V = Z,. A design (V, B) is cyclic if x = x + 1 (mod v) is an automorphism, i.e. Z, acts
regularly by translations on points and preserves 8.
A cyclic SQS is strictly cyclic if no nontrivial translation fixes a block setwise.
e Each block orbit has full length v. Hence b is a multiple of v.
¢ In terms of stabilizers, |Stabz, (B)| = 1 for all base blocks.

A cyclic SQS on Z, is symmetric cyclic (aka. reversible) if inversion x — —x is also an
automorphism. Equivalently, the design is invariant under the dihedral group
Doy, ={(x—> x+1, x> =X).
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Affine-invariant SQS

Affine-invariant design
Let V = Z,. An SQS on V is affine-invariant if

Zy=Zy={x—>ax+b:aecZ,, beZ,)

acts by automorphisms.
* An affine-invariant SQS is strictly cyclic if, in addition, there exists a regular cyclic

subgroup (1) < Aut acting as a v-cycle on points and fixing no block setwise.
* An affine-invariant strictly cyclic SQS(v) exists only when v = 2,10 (mod 24).
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Example: affine-invariant SQS(10)

Example: SQS(10), V = Zq, = {0,1,...,9}.

{0,1,5,9}, {0,2,5,8}, {0,1,3,4},
{1,2,6,0}, {1,3,6,9}, {1,2,4,5},
{2,3,7,1}, {2,4,7,0}, {2,3,5,6},
{3,4,8,2}, {3,5,8,1}, {3,4,6,7},
{4,5,9,3}, {4,6,9,2}, {4,5,7,8},
{5,6,0,4}, {5,7,0,3}, {5,6,8,9},
{6,7,1,5}, {6,8,1,4}, {6,7,9,0},
{7,8,2,6}, {7,9,2,5}, {7,8,0,1},
{8,9,3,7}, {8,0,3,6}, {8,9,1,2},
{9,0,4,8}, {9,1,4,7}, {9,0,2,3}.
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Example: affine-invariant SQS(10)

Example: SQS(10), V = Zq, = {0,1,...,9}.
A (strictly) cyclic SQS

0,1,5,9},

1,11{0,2,5,8},/ 1 {0,1,3,4}, I
{1,2,6,0}, {1,3,6,9}, {1,2,4,5}, Cyclic orbits | B + ¢ € Ogyciic
{2,3,7,1}, {2,4,7,0}, {2,3,5,6},
{3,4,8,2}, {3,5,8,1}, {3,4,6,7},
{4,5,9,3}, {4.6,9,2}, {4.5,7,8},
14{5,6,0,4}, {5,7,0,3}, {5,6,8,9},
{6,7,1,5}, {6,8,1,4}, {6,7,9,0},
{7,8,2,6}, {7,9,2,5}, {7,8,0,1},
{8,9,3,7}, {8,0,3,6}, {8,9,1,2},
{9,0,4,8}, {9,1,4,7}, {9,0,2,3}.
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Example: affine-invariant SQS(10)

Example: SQS(10), V = Zq, = {0,1,...,9}.
+5 A (strictly) cyclic SQS
—0,1,5,9}, {0,2,5,8}, {0,1,3,4}, R
{1,2,6,0}, {1,3,6,9}, {1,2,4,5}, Cyclic orbits
{2,3,7,1}, {2,4,7,0},] {2,3,5, 6},
{3,4,8,2},||{3,5,8,1},]|{3,4,6, 7}, Base blocks of cyclic orbits
4,6,9,2}, {4,5,7,8},
}
}
}

B + Cc e Ocyc”c

LI
b
L
{4,5,9,3}, {
14{5,6,0,4}, {5,7,0,3}, {5,6,8,9},
{6,7,1,5}, {6,8,1,4}, {6,7,9,0},
{7,8,2,6}, {
{8,9,3,7}, {
{9,0,4,8}, {

{7,8,0,1},
8,0,3,6}, {8,9,1,2},
{9,0,2,3}.
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Example: affine-invariant SQS(10)

Example: SQS(10), V = Zq, = {0,1,...,9}.
+5 N A (strictly) cyclic SQS
~0,1,5,9}, 10,2,5,8},| {0,1, 3,4}, S

{1,2,6,0},  {1,3,6,9},]| {1,2,4,5}, Cyclic orbits

{2,3,7,1},1 {2,4,7,0},|| {2,3, 5, 6},

{3,4,8,2},]1{3,5,8,1}, {3,4,6, 7}, Base blocks of cyclic orbits
4,6,9,2}, {4,5,7,8},
}
}
}

B +cCe€ Ocyc”c

L[
L
A
{4,5,9,3}, |{
1{5,6,0,4},/1{5,7,0,3},]| {5,6,8,9}, An affine-invariant SQS
L
LI
L
LU

{6,7,1,5}, {6,8,1,4},]| {6,7,9,0}, |
7,9,2,5), | (7.8,0,1), Affine orbits | aB + ¢ € Oaffine

{7,8,2,6}, {
{8,9,3,7}, {8,0,3,6} {8,9,1,2},
{9,0,2,3}.

{9,0,4,8},
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Example: affine-invariant SQS(10)

Example: SQS(10), V = Zq, = {0,1,...,9}.
A (strictly) cyclic SQS

—0,1,5,9},,10,2,5,8}, | {0, 1,3,4},\ R,
{1,2,6,0},| {1,3,6,9},]| {1,2,4,5}, ( Cyclic orbits | B + ¢ € Ogyciic
{2,3,7,1},1 {2,4,7,0},|| {2,3, 5, 6}, -
{3,4,8,2},]1{3,5,8,1}, {3,4,6, 7}, Base blocks of cyclic orbits
{4,5,9,3},|{4,6,9,2}, {4,5,7,8},

145,6,0,4},/ {5,7,0,3}, | {5,6,8,9}, An affine-invariant SQS

{ }
{ }
{
{

{6,7,1,5}, 1 {6,8,1,4},1{6,7,9, 0}, |
7,9,2,5), | (7.8,0,1), Affine orbits | aB + ¢ € Oaffine

{
8,0,3,6},]{8,9,1,2}, . .
{9.0,2,3). Base blocks of affine orbits

{7,8,2,6},
{8,9,3,7},
{97 07 4’ 8}5

& B (Xiao-Nan Lu) HEE TV OERE 2025 £ 10 B 31 B 69/76



Projective lines and graphs LG(V})
P(Fp) := Fp U {oo}: the projective line over Fp.

Let LG(V,) be a graph whose vertex set is V,, C P(Fp) and edge set is
.y} x=y7, 0 e{oa 0B, 0c}}

Example: LG(P(F
Consider the following involutions on P (F(Frs))

P(Fp): c
(F) oa x> 1-x, ﬁ /BQCE’B
A A
O'BZXP—)%, CC‘@ (:)T@ @
O_CX'_)%‘ B A . A AlC
Q.00 O
Forp=1 (mod 4), ) . s

(oca,oB,0¢) =PSL(2,p).

S BE/ (Xiao-Nan Lu)
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Projective lines and graphs LG(V})
P(Fp) := Fp U {oo}: the projective line over Fp,.

Let LG(V,) be a graph whose vertex set is V,, C P(Fp) and edge set is
.y} x=y7, 0 e{oa 0B, 0c}}

Example: LG(P(F
Consider the following involutions on P (F(Frs))

P(Fp):

(p) oa XH—1-x, @ @
O'BZXH%, @T@
(7'(;:X|—>23(;1 i

x—1"

>
o

Forp=1 (mod 4),

b 4-tupl
(ca,0B,0¢c) = PSL(2,p). A\ @ orbac(x) 4-tuple

={x7 o €(oa,oc)}
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Projective lines and graphs LG(V})
P(Fp) := Fp U {oo}: the projective line over Fp,.

Let LG(V,) be a graph whose vertex set is V,, C P(Fp) and edge set is
.y} x=y7, 0 e{oa 0B, 0c}}

Example: LG(P(F
Consider the following involutions on p (% 13))

P(Fp):
(p) oa XH—1-x,

o X = %, GP (?
oA @, ¥o ()
Forp=1 (mod 4), ’/
orbag(x) 6-tuple
(oa,oB,0¢) =PSL(2,p). .\. p

={x7 o € (Ta,0B)}
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Cross-ratio classes and and graphs CG(V))

® orbap(x) = {x, 1,1, X L 4_xt = C(x),a
X’ x ’x-1°>1-x
cross-ratio class. A a® B r
3 ifxeC(0)uC(2) _ ¢ -

o [C(x)| =12 ifxeC(&) , where &, is a
6 otherwise

rootof x> —x +1=0.

EE B (Xiao-Nan Lu)

HEE TV OERE 2025 £ 10 B 31 B

71/76



Cross-ratio classes and and graphs CG(V))

o orbag(x) = {x. 1,51, 5. 5. 1-x} =: C(x), a
cross-ratio class.

3 ifxeC(0)uC(2) €(x)
o [C(x)| =142 ifxeC(&) , where &, is a
6 otherwise
root of x> — x +1 = 0.

Let CG(V)) be a graph with vertex set consisting of cross-ratio classes
{C(x) | x € Vp CP(Fp)}. Each pair of C-edges in LG(V,) corresponds to an edge in CG(Vp).

* Q, =P(Fp)\ (C(0)UC(2)) =Fp\{0,1,-1,2,27"}.
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Existence of graph 1-factors — existence of SQSs

Theorem (L., Jimbo, 2017)

Letg =1 (mod 4) be a prime. If there exists a 1-factor (perfect matching) in CG(2,), then
there exists an affine-invariant SQS(2p).

e Existence verified for all primes p < 10° with p =1 (mod 4).

Theorem (L., Jimbo, 2017)

Letg =5 (mod 12) be a prime. If there exists a 1-factor (perfect matching) in CG(y), then
there exists an affine-invariant SQS(2p™) for all m > 1.
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Example: 1-factors of CG(2,) with p = 109

CCeeee

The CG graphs are essentially isomorphic to Kéhler’s orbit graphs (1978).
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Example: 1-factors of CG(2,) with p = 109

S X X 2 )
CACICACICIC)

The CG graphs are essentially isomorphic to Kéhler’s orbit graphs (1978).
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Example: 1-factors of CG(2,) with p = 109

CCeeel

The CG graphs are essentially isomorphic to Kéhler’s orbit graphs (1978).
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Abelian group-invariant SQSs (1)

Symmetric K-invariant SQS

Let K be an abelian group of order v. A Steiner quadruple system of order v (SQS(v)) (K, B)
is called symmetric K-invariant if for each B € 8, it holds that B + x € 8 for each x € K and
B =-B + y for some y € K.

Theorem (Munemasa, Sawa, 2012)

Let K be an abelian group of order v = 2 or 4 (mod 6). For a subset B of (’Z) containing By,
the incidence structure (K, 8) is a symmetric K-invariant SQS(v) if and only if
B=ByU(Be (’Z): orby (B) € 7} for some one-factor ¥ of the Kéhler graph of K.
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Abelian group-invariant SQSs (2)

Theorem (Ji, L., 2021)

A symmetric K-invariant SQS(v) exists if and only if v = 2,4 (mod 6), the order of each
element of K is not divisible by 8 and there exists a symmetric cyclic SQS(2p) for any odd
prime divisor p of v.

Proof contains:

Careful group theoretical discussions

+ Very careful discussions on the graph structures (defined on quadruple orbits)
+ Super complicated combinatorial recursive arguments

+ Some analytic number theoretical stuff for a special case...
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One of the hardest part in our proof ...

Theorem (Ji, L., 2021)

Let H be a multiplicative subgroup of Zy, such that |H| = h = (p — 1)/k with k an absolute

constant. Let H, = wH be a coset of H such that w? € H. Let| = {a,a +b,...,a+ (- 1)b}
be an arithmetic progression in Z, with |l = ¢ = O(p). Then,

. _ ’h
N = #{XEZP X, x 'eH,NI} = _p2 +0O( ’_p|0g2p).
In particular, N > 0O if

Cp+1)

2((k —1 1-log2+lo
s > 2+/p(1 - log2 + log p)? + ( ) Vp( g ep)

kp
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Summary & Insights

e A group G + a set of base blocks D (a relatively small collection of subsets) = designs.

* When group G is “strong”, it becomes relatively easier to find the base blocks.
In this case, most results heavily rely on group theory (e.g., the classification of finite
simple groups).

* When the base blocks are highly structured (e.g., cyclotomy), the group tends to be a
simpler one.
In this case, the approach is more closely related to number theory.

® Finding a good balance between G and D is interesting but challenging.

® These methods can be applied to many problems arising from information theory and
statistics.

* However, classical open problems (such as the existence of projective planes of
non-prime order or cyclotomic difference sets) may require entirely new mathematical
ideas.
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