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Matroid

E : a finite set, B C 2F
Definition
e M = (E, B) is matroid with the basis B

< (Bl) B#0,
(B2) B,B'€eB,x € B\B' = Jye B st. (B\{z})u{y}ehB.

@ An element in B call a base.
@ The rank of M is defined by the number of element of a base.




Example
Let
o I'=(V,FE) : a connected graph,
e B={T C E | spanning trees in I }.
Then M(T") = (E, B) is a matroid. (graphic matroid)

Remark
M(T) is simple <= T is simple




The basis generating function

Let M = (E, B) be a matroid with rank r.

Definition

FM:ZH:Ue

BeBeceB

Remark
e Fj is a homogeneous polynomial of degree r.
e Fs is a sum of square-free monomials with coefficients one.

o For a graphic matroid M(T'), Fjr)y = Fr is called the Kirchhoff
polynomial of T'.




The strong Lefschetz property

Let R = @)_, Rk, Rs # 0 be a graded Artinian ring.

Definition

R has the strong Lefschetz property (SLP) at degree k with L € Ry.
< the following map is bijective:

—2k
xL" Ry — R,
W W

f— i f

Definition

R has the strong Lefschetz property (SLP) with L € Ry
< Vk € { 0,1,...,[5] }, R has SLP at degree k with L.




Remark
Let £, ={ L € Ry | xL*"% : R, — R, is bijective }.

Vk,ﬁwé(b = ﬂ£k7é®
k

Proposition
o R=@,_, Rk : a garded Artinian algebra,
o h = (ho,h1,...,h;): the Hilbert function of R.
If R has SLP, then:
e the Hilbert function is symmetric (Vk,hy = h,_),
e the Hilbert function is unimodal. / \




Aritinian Gorenstein algebra

Let
F € Klz1,x2,...,2z,] : a homogeneous polynomial of degree r,

Ann(F):{PEK[xl,...,a:n] P(%,...,%)F:O},

R=K[z1,...,2,)/ Ann(F) = ) Ry
k=0

Then, R is a graded Artinian Gorenstein algebra.



SLP for Gorenstein algebras

o R=Kl[z1,...,z,]/ Ann(F) = @B}._, Ry.
o Ay: K-basis for Ry.

Definition (The k-th Hessian matrix)

k) d o) o) )
H( :<ei<—... —>e~<—... —)F) .
F oz’ ) Oy J \ Oz’ ) Oy, eire;€AL

Remark

If {x1,...,2, } is a K-basis for Ry, then Hl(;l) is usual Hessian matrix.

o

Theorem (J. Watanabe, Maeno—Watanabe)
Let L =ayx1 + -+ apz, € Ry

X L™k Ry, — R,_}, is bijective <= det H}k)(al, coyan) #0.

v




Main theorem

e Let I' = (V, E) a simple connected graph with
#V =r+1 (r>2), E={L2...,n}.

@ The Kirchhoff polynomial Fr is a homogeneous polynomial of
degree 7.

o Consider the Artinian Gorenstein algebra



Main theorem

Theorem (Main theorem)

For a = (ai,...,a,) € RY), we have det ng)(a) # 0.
Moreover, the Hessian matriz H%)(a) has
e exactly one positive eigenvalue,

e n — 1 negative eigenvalues.

By the Hessian criterion, we have the following:

Corollary
Fora = (ai,...,an) € RY, define Lg = ayx1 4 - + an®pn. Then

xL'™2: R — R,

is bijective. Therefore Rr has SLP at degree 1.




Outline

© Sketch of proof
@ The Hessian of the Kirchhoff polynomial of the complete graph
o Log-concavity of the Kirchhoff polynomial



Outline of proof

o '=(V,E)with #V =r+1, E={1,2,...,n},
o Rr =Rz1,...,z,]/ Ann(Fr) = @ R

Theorem (Main theorem)

For a = (ai,...,a,) € RY,, we have det H%)(a) # 0.
Moreover, the Hessian matriz H%)(a) has
@ exactly one positive eitgenvalue,

e n — 1 negative eigenvalues.




Rough sketch

e K, : complete graph
o I': subgraph of the complete graph

For a € RY,), N Fy is strictly
det Hg, (a) # 0. log-concave on RZ.
For a € RY), - Fr is strictly

det Hr(a) # 0. log-concave on RZ .




Rough sketch

e K, : complete graph
o I': subgraph of the complete graph
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det Hg, (a) # 0. log-concave on RZ.
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Hessian matrices and log-concavity
Let F be a general homogeneous polynomial of degree 7.

Definition
F'is log-concave at a € R™
& —F(x)Hp(x) + (grad F(x))" - grad F(z)|

is positive semidefinite.

r=a




Hessian matrices and log-concavity
Let F be a general homogeneous polynomial of degree 7.
Definition

F'is log-concave at a € R™

& —F(x)Hp(x) + (grad F(x))" - grad F(z)| =0

r=a




Hessian matrices and log-concavity
Let F be a general homogeneous polynomial of degree 7.
Definition

F is (strictly) log-concave at a € R™

& —F(x)Hp(x) + (grad F(x))! - grad F(z)|___ =0 (- 0)

r=a




Hessian matrices and log-concavity

Let F be a general homogeneous polynomial of degree r
Definition

F is (strictly) log-concave at a € R”

& —F(z)Hp(x) + (grad F(x))! - grad F(:I:)}m:a =0(>0)

Remark

e F'is log-concave <= logF'is concave <= Hjozpr =0
°

0 0
H, — log F’
( log F ) 8 8.1‘] Og

F(0xi0x;F) — (0, F')(0x; F)
2




Hessian matrices and log-concavity

Let F be a general homogeneous polynomial of degree 7.
Definition
F is (strictly) log-concave at a € R”

& —F(x)Hp(x) + (grad F(x))" - grad F(z)| =0(>0)

r=a

Lemma

Let F' be a homogeneous polynimoal of degree r. Then

1
det (—FHp + (grad F)" - grad F') = (_1)“—1mF" det Hp.




Hessian matrices and log-concavity

Let F be a general homogeneous polynomial of degree 7.
Definition
F is (strictly) log-concave at a € R”

& —F(x)Hp(x) + (grad F(z))" - grad F(x)| =0(>0)

r=a

Lemma

Let F' be a homogeneous polynimoal of degree r. Then

1
det (—FHp + (grad F)" - grad F') = (_1)"—1mF" det Hp.

Remark

e I is log-concave,

F' is strictly log-concave
o det H F 75 0.




Signature of a Hessian matrix

Theorem (Cauchy’s interlacing theorem)
@ A:n xn symmetric matriz
@ a1 > - >y eigenvalues of A.
e B=A+v v (veR").
@ B >---> [, eigenvalues of B.
Then

Br=>01 > P> > an_1> Bn > an.

Corollary
If B is positive definite, and tr A = 0, then A has
e exactly one positive eigenvalue,

e n — 1 negative eigenvalues.




Signature of a Hessian matrix

Assume that
e F'is a homogeneous polynomial in n variables,

e F'is a sum of square-free monomials with positive coefficients.

Remark
o Hp is an n X n symmetric matrix.

e Each diagonal of Hr is zero. (= trHrp =0)

By Cauchy’s interlacing theorem, we have the following:
Proposition

If F is strictly log-concave on RY, then Hr(a)(a € RZ;) has
@ cxactly one positive etgenvalue,

o n — 1 negative eigenvalues.




Log-concavity of a Kirchhoff polynomial

Here we consider a Kirchhoff polynomial Fr.

Remark
e Fr is a homogeneous polynomial.

@ FT is a sum of square-free monomials with coefficients one.

Theorem (Anari-Oveis Gharan—Vinzant)

For any martoid M, the basis genarating function Fyr is log-concave on
RZ,. In particular, a Kirchhoff polynomial is log-concave.

v

By this theorem, we have the following:

Remark

For a Kirchhoff polynomial Fr,
Fr is strictly log-concave on RY; <= det Hp.(a) # 0 (a € RY).




Rough sketch

e K, : complete graph
o I': subgraph of the complete graph

For a € RY,), N Fy is strictly
det Hg, (a) # 0. log-concave on RZ.
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det Hr(a) # 0. log-concave on RZ .
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Assume that
e F € R[xy,...,x,] is a homogeneous polynomial of degree r,

e [ is a sum of square-free monomials with positive coefficients.

Lemma (%)

Assume that F' is strictly log-concave on RZ. If

OF 8F\x1 0

I 2o, 7—1_& 0,. aF’m:'“:mkﬂ:O
8901

oxy,

Z0

holds for some 0 < k <n —r,

then Fly—..—p—0 € Rlapi1, ..., 2] is strictly log-concave on R




Lemma

Every Kirchhoff polynomial is obtained from the Kirchhoff polynomial
of the complete graph with same number vertices by substituting zero
for some variables.

Example

FK4\e = FK4‘$5=0'




We can apply the Kirchhoff polynomial F_ to Lemma(x)

Lemma (%)

Assume that F' is strictly log-concave on RY,. If

OF amm L

G20, £0,. 8F’$1=-"=$k—1=0
8271

&rk

Z0

holds for some 0 < k <n —r,

then F|gp =..=g,=0 € R[Xgt1,...,2y,] is strictly log-concave on Rgak,




Rough sketch

e K, : complete graph
o I': subgraph of the complete graph
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Rough sketch

e K, : complete graph
o I': subgraph of the complete graph

For a € RY,), N Fy is strictly
det Hg, (a) # 0. log-concave on RZ.
For a € RY), - Fr is strictly

det Hr(a) # 0. log-concave on RZ .




Proposition
Forr > 3,

T

det HY) () = (—1)6) 12071 — 2)(F, () ).

Remark

o It is known that det Hl(wllg (1,...,1) #0.

@ Since the Kirchhoff polynomial is a sum of monomials with
positive coefficients, Proposition implies that

det HY) (@) # 0, (a € RZ).




Hessians and Prehomogeneous vector spaces

(G, p,V) : a prehomogeneous vector space/C

Definition
F € C(V) is a relative invariant (corresponding to x)
& dx € Hom(G — C¥) s.t. Vg € G,Vx € V, F(p(g9)x) = x(9)F(x).

Proposition

Q@ F e C(V) is a relative invariant
— det Hp is also a relative invariant.
Q (G,p,V): irreducible prehomo. ( <= p : irreducible)
—> Then there is at most one irreducible relative invariant F up

to constant multiple. In particular, any relative invariant is in the
form of cF™ for ¢ € C and m € Z.




By previous proposition, we have the following:

Corollary
o (G,p,V) : irreducible prehomogeneous vector space,

o I : irreducible relative invariant.

= dc,3Im, s.t. det Hp = cF™




Presentation of Kirchhoff polynomials

e Let I' = (V, E) be a simple graph
ee={i,j} el «— z.
o Fore={1i,j} € E, define

D ki Tik 1=,
lij = =4 i~
0 i g
o Lr = (lij)ijev (the Laplacian of T")

Theorem (The matrix-tree theorem)

Vi, j, Fr = det L7,




Example

T12 + 13 + T14

—T12
LK ==
4 —T13

—Z14

1 T14 4
1
T12 34
)
2 T23 3
—T12 —x13
T12 + T3 + Xog — Z23
— Z23 T13 + T23 + X34
— T4 — T34

—X14
— Ty
— T34
T14 + T4 + T34




Example

T12 + 213 + T14 —T12
—T12 T12 + T23 + T24
LK =
4 —T13 — 23
—T14 — T24

—Z13
— T23

13 + Ta3 + T34
— T34

—Z14
— T4
— T34
T14 + T2g + T34




Example

T12 + T13 + T14

(11) =A%)
LK4 - —T13
—T14

—Z12

T12 + X2z + Ta4
— T23
— Taq

—Z13
— T23

T13 + T23 + T34
— T34

—Z14
— T24
— T34
T14 + Tag + T34




Example

T12 + T13 + T14

(11) =A%)
LK4 - —T13
—T14

—Z12

T12 + X3 + Ta4
— T23
— Taq

—Z13
— T23

13 + Ta3 + T34
— T34

—Z14
— T24
— T34
T14 + Tag + T34




Example

T12 + T13 + T14 —T19 —213 —T14

L%l) _ —Z12 T12 + T23 + T24 — T23 — T24

4 —13 — T23 13 + Z23 + T34 — T34
—T14 — X4 — T34 T14 + Tag + T34

" { ng) zi; € C } = { 3 x 3 symmetric matrix } =: Sym(3, C).

By FK4 = det L%i% we can regard FK4 3 Sym(3, (C) - C.




Example

T12 + T13 + T14 —T19 —213 —X14

L(ll) _ —Z12 T12 + X3 + Ta4 — T23 — T24

Ky ™ —13 — T23 13 + Z23 + T34 — T34
—T14 — X4 — T34 T14 + Tag + T34

" { ng) zi; € C } = { 3 x 3 symmetric matrix } =: Sym(3, C).

By FK4 = det L%i% we can regard FK4 3 Sym(3, (C) - C.

Proposition
(11)

Ky

e In general, { L gy € € } = Sym(r, C),

o Hence we can regard Fr, ., : Sym(r,C) — C.




The Hessian of the Kirchhoff polynomial of K,

Define

p: GL.(C) — GL(Sym(r,C))

P): Sym(n,C Sym(r, C
P H(P() y)(( ): ymgpt))‘

Proposition (cf. Kimura—Sato)

Then (GL,(C), p,Sym(r,C)) is an irreducible prehomogeneous vector
space. Moreover, det : Sym(r,C) — C is an irreducible relative
mvariant.




Proposition

The Kirchhoff polynomial Fi, is an irreducible relative invariant.

Proposition (Y.)

r

det HO(1,..., 1) = (~1) D126 =417+ G4 _ 9y 2 0.

Combining these propositions, we have the following:

Theorem

det HY = (—1)()~126G)—=1(y _ 9)(Fy, ) &)
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